Secondary Structure in the Core of Amyloid Fibrils
نویسندگان
چکیده
Amyloid fibrils formed from initially soluble proteins with diverse sequences are associated with an array of human diseases. In the human disorder, dialysis-related amyloidosis (DRA), fibrils contain two major constituents, full-length human β2-microglobulin (hβ2m) and a truncation variant, ΔN6 which lacks the N-terminal six amino acids. These fibrils are assembled from initially natively folded proteins with an all antiparallel β-stranded structure. Here, backbone conformations of wild-type hβ2m and ΔN6 in their amyloid forms have been determined using a combination of dilute isotopic labeling strategies and multidimensional magic angle spinning (MAS) NMR techniques at high magnetic fields, providing valuable structural information at the atomic-level about the fibril architecture. The secondary structures of both fibril types, determined by the assignment of ∼80% of the backbone resonances of these 100and 94-residue proteins, respectively, reveal substantial backbone rearrangement compared with the location of β-strands in their native immunoglobulin folds. The identification of seven β-strands in hβ2m fibrils indicates that approximately 70 residues are in a β-strand conformation in the fibril core. By contrast, nine β-strands comprise the fibrils formed from ΔN6, indicating a more extensive core. The precise location and length of β-strands in the two fibril forms also differ. The results indicate fibrils of ΔN6 and hβ2m have an extensive core architecture involving the majority of residues in the polypeptide sequence. The common elements of the backbone structure of the two proteins likely facilitates their ability to copolymerize during amyloid fibril assembly.
منابع مشابه
Anti-amyloidogenic and disaggregating effects of Salvia officinalis in vitro: a strategy to reduce the insulin amyloid fibrils due to repeated subcutaneous injections in diabetic patients
Background: Recently, there has been growing efforts to elucidate the molecular mechanism of amyloid formation and investigating effective compounds for inhibiting of amyloid structures. Investigation of the fibrillation process through its induction and inhibition using specific compounds such as aromatic derivatives provide useful information for stabilizing the protein structure. In the pres...
متن کاملInhibitory Effect of Cinnamomum Zeylanicum and Camellia Sinensis Extracts on the Hen EggWhite Lysozyme Fibrillation
Background & Aims: Many neurodegenerative diseases including Alzheimer’s, Parkinson and Huntington diseases are associated with the deposition proteinaceous aggregates known as amyloid fibrils. Currently, there is no approved therapeutic agent for inhibition of fibrillar assemblies. One important approach in the development of therapeutic agents is the use of herbal extracts. At the present com...
متن کاملSecondary Structure in the Core of Amyloid Fibrils Formed from Human β2m and its Truncated Variant ΔN6
Amyloid fibrils formed from initially soluble proteins with diverse sequences are associated with an array of human diseases. In the human disorder, dialysis-related amyloidosis (DRA), fibrils contain two major constituents, full-length human β2-microglobulin (hβ2m) and a truncation variant, ΔN6 which lacks the N-terminal six amino acids. These fibrils are assembled from initially natively fold...
متن کاملDetermination of amyloid core structure using chemical shifts.
Amyloid fibrils are the pathological hallmark of a large variety of neurodegenerative disorders. The structural characterization of amyloid fibrils, however, is challenging due to their non-crystalline, heterogeneous, and often dynamic nature. Thus, the structure of amyloid fibrils of many proteins is still unknown. We here show that the structure calculation program CS-Rosetta can be used to o...
متن کاملStudy of Nanofibrils Formation of Fibroin Protein in Specific Thermal and Acidity Conditions
Background: Amyloid fibrils are insoluble arranged aggregates of proteins that are fibrillar in structure and related to many diseases (at least 20 types of illnesses) and also create many pathologic conditions. Therefore understanding the circumstance of fibril formation is very important.Objectives: This study aims to work on fibrillar structure formation of fibroin (as a model protein)...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2014